阿里斯塔克斯基于弦月和太阳分离的角度是87°[15],估计太阳到地球的距离是地月距离的18至20倍,但实际上是390倍。
依据该撒利亚的优西比乌《福音的准备》(Praeparatio Evangelica),埃拉托斯特尼发现太阳的距离是"σταδιων μυριαδας τετρακοσιας και οκτωκισμυριας"(直译为“10000个400和/加80000斯达地”),译作408,0000斯达地(1903年埃德温·汉密尔顿吉福翻译),或相当于8,0400,0000斯达地(edition of Édouard des Places在1974-1991年的编辑),而希腊的斯达地相当于现今的185至190米[16][17],前者的翻译太低,只有75,5000公里,而第二位的翻译是1亿4870万公里至1亿5280万公里(精确至2%)[18]。
喜帕恰斯也给了地球至太阳距离的估计值,以Pappus的引述是地球半径的490倍。依据诺埃尔斯维尔德洛和G.J.图默重建的推测,可以看得出这是来自太阳的视差"至少"有7弧分的假设[19]。
一篇中国的数学论文,周髀算经(大约在公元前一世纪)显示了如何利用几何学计算出太阳的距离:假设地球是平坦的,使用相距1000华里的三个地点,测量在正午的日影长度[20]。
太阳视差
地球半径
喜帕恰斯(公元前2世纪)
7'
490
托勒密(公元2世纪)
2′ 50″
1210
Godefroy Wendelin(1635)
15″
1,4000
耶利米霍罗克斯(1639)
15″
1,4000
克里斯蒂安·惠更斯(1659)
8.6″
2,4000
卡西尼& 李察(1672)
9½″
2,1700
杰罗姆拉朗德(1771)
8.6″
2,4000
西蒙·纽康(1895)
8.80″
2,3440
阿瑟·罗伯特(1909)
8.807″
2,3420
哈罗德·斯潘塞·琼斯(1941)
8.790″
2,3466
现代
8.794143″
2,3455
在公元2世纪,托勒密估计太阳的平均距离是地球半径的1210倍[21][22]。要确定这个值,托勒密测量了月球的视差,发现月球的平视差是1° 26′,而这个值比实际的大了许多。然后他推导出月球的最大距离是地球半径的64 1/6倍。由于他的视差图和它的月球轨道理论中的错误互相抵消,因此这一数值大致上是接近正确值的[23][24]。然后,他测量太阳和月球的视大小,并得出结论认为太阳表面的直径和月球在最大距离时的月球直径一样,并且从月食的纪录,他以月食时月球通过地球影锥的时间估计影锥的视直径。从这些数据,地球到太阳的距离可以利用三角学算出是地球半径的1210倍。这使太阳和月球距离的比率大约是19倍,符合阿里斯塔克斯匹配的图形。虽然从理论上来说,托勒密的过程是可行的,但它对数据上微小的变化非常敏感,因此只要在测量上变更几个百分点,就可以使太阳的距离变成无限大[23]。
希腊天文学在中世纪传到伊斯兰世界之后,天文学家对托勒密的宇宙模型做了一些变动,但是对他估计的太阳到地球距离并没有多大的改变。例如,在介绍托勒密天文学时,al-Farghānī给的太阳与地球的平均距离是1170个地球半径;而在他的zij,al-Battānī所用太阳的平均距离为1108个地球半径。其后的天文学家,像是al-Bīrūnī,也使用相似的数值[25]。稍后在欧洲,哥白尼和第谷也使用类似的数值(1142个地球半径和1150个地球半径),和托勒密的数值也非常接近,地球和太阳距离经过16世纪幸存了下来[26]。
约翰内斯·开普勒是第一位体认到托勒密估计的数值太低的人(根据开普勒,至少要提高三倍),在他的鲁道夫星表(1627年),开普勒行星运动定律允许天文学家计算太阳与行星的相对距离,并且引起重新测量地球与太阳绝对距离的兴趣(然后可以用于其它的行星)。望远镜的发明允许可以比肉眼观测更精确的测量角度,佛兰芒天文学家Godefroy Wendelin在1635年重新进行阿里斯塔克斯的观测,并且发现托勒密的数值至少低了11倍。
通过金星凌日的观测可以得到更准确的估计值。从两个不同的位置测量金星凌日,可以精确金星的视差,和金星与地球相对于太阳的相对距离,太阳视差α(不能直接测量[27])。耶利米霍罗克斯曾经企图根据他在1639年观测的金星凌日为基础来估计这个值(于1662年发表),得到的视差值是15弧秒,类似于温德林的值。太阳视差是以地球-太阳的距离和地球的半径为底线测量的:
A
=
1
tan
α
.
{\displaystyle A={1 \over {\tan \alpha }}.}
太阳视差越小,太阳和地球的距离越远:15"的太阳视差相当于地球和太阳的距离是1,3750地球半径。
惠更斯相信这个距离应该更大:经由比较金星和火星的视大小,他估计是2,4000地球半径[28],相当于8.6"的太阳视差。虽然惠更斯的估计值非常接近现代的值,但是因为他的工作方法经常有许多无法证明(或错误)的假设,因此天文史学家对他的成就经常会打个折扣;因此他这个精确的数值似乎是出于幸运而非良好的观测,可能是他的各项错误相互抵销的结果。
尽管有所谓的黑滴效应使金星凌日的测量非常困难,但这种罕见的现象,长久以来仍是测量天文单位的最佳方法。
Jean Richer和卡西尼在1672年火星大接近地球时,分别从巴黎和法属圭亚那的首府卡宴测量火星的视差。他们得到太阳视差是9½",这相当于地球半径的22,000倍。他们还是第一次获得准确和可靠的地球半径数值的天文学家:与他们的同事让·皮卡尔在1669年测量出地球半径是326,9000toise(1toise =1.949米)。另一位同行,奥勒·罗默,在1676年证实光波以限速度传播:数值是如此之大,通常需要以光线行经太阳到地球的距离所经过的时间,或每单位距离的光时来引述,现今天文学家还保留了这个距离单位。
詹姆斯·葛列格里发展出更好的方法来观测金星凌日,并且发表在Optica Promata(1663年),得到爱德蒙·哈雷强烈的支持[29],并且应用在1761和1769以及1874年和1882年年的金星凌日观测上。金星凌日是成对发生的,但是每世纪发生和观测的次数少于一次,因此1761年和1769年的观测是一次前所未有的国际合作。尽管在七年战争的期间,还是耗费巨资派遣了数十名天文学家至世界各地进行观测:有几位因而鞠躬尽瘁[30]。Jérôme Lalande整理各种不同的结果,得到的太阳视差是8.6″的结果。
日期
方法
A/Gm
误差
1895
光行差
149.25
0.12
1941
视差
149.674
0.016
1964
雷达
149.5981
0.001
1976
遥测
149.597 870
0.000 001
2009
遥测
149.597 870 700
0.000 000 003
另一种方法与光行差常数有关,并且得到被广泛接受的太阳视差:8.80″(接近现在的数值:8.794143″),虽然西蒙·纽康也是用金星凌日的资料,但他给这种方法很高的评价。纽康也与A. A. Michelson合作以地基的设备测量光速;与光行差常数(这是每单位距离的光时)结合,首次直接测量得到以公里为单位的日地距离。纽康的太阳视差值(和光行差常数与高斯引力常数)在1896年被纳入第一次国际体系的天文常数[31],并且直到1964年都被用来计算星历表[32]。天文单位这个名词在1930年首度被使用[33]。
近地小行星爱神星的发现和1900年至1901年的接近,使视差的测量获得很大的改善[34]。另一次国际性的专案在1930-1931年再度进行了爱神星视差的测量[27][35]。
在1960年代初期,直接用雷达测量金星和火星的距离成为可行的方法。随着光速测量值的改进,这显示纽康的太阳视差和光行差常数两者是互相矛盾的[36]。